An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations

نویسندگان

  • Qingzhi Zhao
  • Yibin Yao
  • Xinyun Cao
  • Feng Zhou
  • Pengfei Xia
چکیده

Aside from the well-known applications (positioning, navigation and timing) brought by Global Navigation Satellite System (GNSS), reconstruction of tropospheric atmosphere distribution information using tomography technique based on the multi-GNSS observations has been developed as a research point in the fields of GNSS Meteorology. In this paper, an optimal tropospheric tomography method using observations from multi-GNSS (Global Navigation Satellite System) is proposed, which considers the reasonable weightings of observation equations derived from multi-GNSS as well as the various constraints. Comparing to the equal weighting strategy of multi-GNSS observations for the previously multi-GNSS tomography studies, the proposed method in this paper has the ability to tune the weightings for a different type of equations. Experiments show that the proposed method can improve the internal/external accuracy of GNSS tomography modeling with the GNSS precise point positioning (PPP)-estimated slant wet delay as reference when compared to the conventional method. In addition, the data derived from radiosonde is used as an external testing, and the result also expresses the superiority of the proposed method when compared to the conventional method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Improvement of Tropospheric Delay Interpolation in RTK Networks

The effect of troposphere on the signals emitted from global navigation satellite system (GNSS) satellites, appears as an extra delay in the measurement of the signal traveling from the satellite to receiver. This delay depends on the temperature, pressure, humidity as well as the transmitter and receiver antennas location. In GNSS positioning, tropospheric delay effects on accuracy of differen...

متن کامل

New Adaptable All-in-One Strategy for Estimating Advanced Tropospheric Parameters and Using Real-Time Orbits and Clocks

We developed a new strategy for a synchronous generation of real-time (RT) and near real-time (NRT) tropospheric products. It exploits the precise point positioning method with Kalman filtering and backward smoothing, both supported by real-time orbit and clock products. The strategy can be optimized for the latency or the accuracy of NRT production. In terms of precision, it is comparable to t...

متن کامل

The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning

Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote ...

متن کامل

مدل سازی خطای تروپوسفری برای مشاهدات تعیین موقعیت ماهواره‌ای

In this paper a practical method for tropospheric effects on GPS derived coordinates in absolute mode is presented. GPS observations at the permanent GPS stations can be used as source of information for the modeling. The developed model is a time-dependent model and as such differs from usual tropospheric models, which are based on atmospheric parameters, i.e. temperature, pressure and humidit...

متن کامل

Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams

The multi-constellation Global Navigation Satellite Systems (GNSS) offers promising potential for the retrieval of real-time (RT) atmospheric parameters to support time-critical meteorological applications, such as nowcasting or regional short-term forecasts. In this study, we processed GNSS data from the globally distributed Multi-GNSS Experiment (MGEX) network of about 30 ground stations by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018